Prodrug-mediated Tumor Cell Killing Semi-Random Sequence Mutagenesis Improve Herpes Simplex Virus-1 Thymidine Kinase Mutants Created by Updated Version

نویسندگان

  • Margaret E. Black
  • Mark S. Kokoris
  • Peter Sabo
چکیده

Cancer suicide gene therapy affords the prospect of using the most optimal genes available because the source of the therapeutic gene is often irrelevant. Currently, there are numerous preclinical and clinical trials to develop tumor ablative therapies that use viral, yeast, or bacterial genes. One such gene, the herpes simplex virus type 1 (HSV-1) thymidine kinase (TK) is widely used as a suicide gene in combination with ganciclovir. In the study reported here, a restricted set of random sequences (semirandom) was introduced into the active site of HSV-1 TK, and the resulting variants were selected on the basis of their ability to confer increased ganciclovir or acyclovir sensitivity to Escherichia coli. Sequence analysis demonstrated that functional mutants contained three to five amino acid substitutions that are unique and novel combinations. On the basis of enzyme assay results, three mutants were identified for further analysis in vitro. These three mutants conferred substantial increased sensitivity to both ganciclovir and acyclovir when compared with IC50s of wild-type TK expressing rat C6 glioma cells. One mutant, SR39, was further evaluated in a xenograft tumor model in nude mice. Expression of SR39 in tumors was shown to prevent tumor growth at prodrug dosages that did not affect wild-type HSV-1 TK-expressing tumors. The use of any of these mutants as a suicide gene should provide a more effective and safer alternative to wild-type TK, because lower, less immunosuppressive doses of ganciclovir will be necessary for tumor ablation, and the use of acyclovir may now be possible.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Herpes simplex virus-1 thymidine kinase mutants created by semi-random sequence mutagenesis improve prodrug-mediated tumor cell killing.

Cancer suicide gene therapy affords the prospect of using the most optimal genes available because the source of the therapeutic gene is often irrelevant. Currently, there are numerous preclinical and clinical trials to develop tumor ablative therapies that use viral, yeast, or bacterial genes. One such gene, the herpes simplex virus type 1 (HSV-1) thymidine kinase (TK) is widely used as a suic...

متن کامل

The Role of Herpes Simplex Virus-1 Thymidine Kinase Alanine 168 in Substrate Specificity

Herpes simplex virus type 1 (HSV) thymidine kinase (TK) has been widely used in suicide gene therapy for the treatment of cancer due to its broad substrate specificity and the inability of the endogenous human TK to phosphorylate guanosine analogs such as ganciclovir (GCV). The basis of suicide gene therapy is the introduction of a gene that encodes a prodrug-activating enzyme into tumor cells....

متن کامل

Optimizing prostate cancer suicide gene therapy using herpes simplex virus thymidine kinase active site variants.

The herpes simplex virus (HSV) thymidine kinase gene (tk) forms the basis of a widely used strategy for suicide gene therapy. A library of HSV thymidine kinase enzyme (TK) active site mutants having different affinities for guanosine analog prodrugs was developed. We sought to determine the optimal combination of tk variant and prodrug specifically for prostate cancer gene therapy, using in vit...

متن کامل

Creation of drug-specific herpes simplex virus type 1 thymidine kinase mutants for gene therapy.

Herpes simplex virus type 1 (HSV-1) thymidine kinase is currently used as a suicide agent in the gene therapy of cancer. This therapy is based on the preferential phosphorylation of nucleoside analogs by tumor cells expressing HSV-1 thymidine kinase. However, the use of HSV-1 thymidine kinase is limited in part by the toxicity of the nucleoside analogs. We have used random sequence mutagenesis ...

متن کامل

A dual function fusion protein of Herpes simplex virus type 1 thymidine kinase and firefly luciferase for noninvasive in vivo imaging of gene therapy in malignant glioma

BACKGROUND: Suicide gene therapy employing the prodrug activating system Herpes simplex virus type 1 thymidine kinase (HSV-TK)/ ganciclovir (GCV) has proven to be effective in killing experimental brain tumors. In contrast, glioma patients treated with HSV-TK/ GCV did not show significant treatment benefit, most likely due to insufficient transgene delivery to tumor cells. Therefore, this study...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2001